Колебания. Гармонические колебания. Уравнение гармонических колебаний. Уравнение гармонических колебаний и его значение в исследовании природы колебательных процессов Уравнение гармонических колебаний

Простейшим видом колебаний являются гармонические колебания - колебания, при которых смещение колеблющейся точки от положения равновесия изменяется с течением времени по закону синуса или косинуса.

Так, при равномерном вращении шарика по окружности его проекция (тень в параллельных лучах света) совершает на вертикальном экране (рис. 1) гармоническое колебательное движение.

Смещение от положения равновесия при гармонических колебаниях описывается уравнением (его называют кинематическим законом гармонического движения) вида:

где х - смешение - величина, характеризующая положение колеблющейся точки в момент времени t относительно положения равновесия и измеряемая расстоянием от положения равновесия до положения точки в заданный момент времени; А - амплитуда колебаний - максимальное смещение тела из положения равновесия; Т - период колебаний - время совершения одного полного колебания; т.е. наименьший промежуток времени, по истечении которого повторяются значения физических величин, характеризующих колебание; - начальная фаза;

Фаза колебании в момент времени t. Фаза колебаний - это аргумент периодической функции, который при заданной амплитуде колебаний определяет состояние колебательной системы (смещение, скорость, ускорение) тела в любой момент времени.

Если в начальный момент времени колеблющаяся точка максимально смещена от положения равновесия, то , а смещение точки от положения равновесия изменяется по закону

Если колеблющаяся точка при находится в положении устойчивого равновесия, то смещение точки от положения равновесия изменяется по закону

Величину V, обратную периоду и равную числу полных колебаний, совершаемых за 1 с, называют частотой колебаний:

Если за время t тело совершает N полных колебаний, то

Величину , показывающую, сколько колебаний совершает тело за с, называют циклической (круговой) частотой .

Кинематический закон гармонического движения можно записать в виде:

Графически зависимость смещения колеблющейся точки от времени изображается косинусоидой (или синусоидой).

На рисунке 2, а представлен график зависимости от времени смещения колеблющейся точки от положения равновесия для случая .

Выясним, как изменяется скорость колеблющейся точки со временем. Для этого найдем производную по времени от этого выражения:

где - амплитуда проекции скорости на ось х.

Эта формула показывает, что при гармонических колебаниях проекция скорости тела на ось х изменяется тоже по гармоническому закону с той же частотой, с другой амплитудой и опережает по фазе смешение на (рис. 2, б).

Для выяснения зависимости ускорения найдем производную по времени от проекции скорости:

где - амплитуда проекции ускорения на ось х.

При гармонических колебаниях проекция ускорения опережает смещение по фазе на к (рис. 2, в).

«Физика - 11 класс»

Ускорение - вторая производная координаты по времени.

Мгновенная скорость точки - это производная координаты точки по времени.
Ускорение точки - это производная ее скорости по времени, или вторая производная координаты по времени.
Поэтому уравнение движения маятника можно записать так:

где х" - вторая производная координаты по времени.

При свободных колебаниях координата х изменяется со временем так, что вторая производная координаты по времени прямо пропорциональна самой координате и противоположна ей по знаку.


Гармонические колебания

Из математики: вторые производные синуса и косинуса по их аргументу пропорциональны самим функциям, взятым с противоположным знаком, и никакие другие функции таким свойством не обладают.
Поэтому:
Координата тела, совершающего свободные колебания, меняется с течением времени по закону синуса или косинуса.


Периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса, называются гармоническими колебаниями .


Амплитуда колебаний

Амплитудой гармонических колебаний называется модуль наибольшего смещения тела от положения равновесия.

Амплитуда определяется начальными условиями, а точнее энергией, сообщаемой телу.

График зависимости координаты тела от времени представляет собой косинусоиду.

х = x m cos ω 0 t

Тогда уравнение движения, описывающее свободные колебания маятника:

Период и частота гармонических колебаний.

При колебаниях движения тела периодически повторяются.
Промежуток времени Т, за который система совершает один полный цикл колебаний, называется периодом колебаний .

Частота колебаний - это число колебаний в единицу времени.
Если одно колебание совершается за время Т то число колебаний за секунду

В Международной системе единиц (СИ) единица частоты называется герцем (Гц) в честь немецкого физика Г. Герца.

Число колебаний за 2π с равно:

Величина ω 0 - это циклическая (или круговая) частота колебаний.
Через промежуток времени, равный одному периоду, колебания повторяются.

Частоту свободных колебаний называют собственной частотой колебательной системы.
Часто для краткости циклическую частоту называют просто частотой.


Зависимость частоты и периода свободных колебаний от свойств системы.

1. для пружинного маятника

Собственная частота колебаний пружинного маятника равна:

Она тем больше, чем больше жесткость пружины k, и тем меньше, чем больше масса тела m.
Жесткая пружина сообщает телу большее ускорение, быстрее меняет скорость тела, а чем тело массивнее, тем медленнее оно изменяет скорость под влиянием силы.

Период колебаний равен:

Период колебаний пружинного маятника не зависит от амплитуды колебаний.


2. для нитяного маятника

Собственная частота колебаний математического маятника при малых углах отклонения нити от вертикали зависит от длины маятника и ускорения свободного падения:

Период же этих колебаний равен

Период колебаний нитяного маятника при малых углах отклонения не зависит от амплитуды колебаний.

Период колебаний возрастает с увеличением длины маятника. От массы маятника он не зависит.

Чем меньше g, тем больше период колебаний маятника и, следовательно, тем медленнее идут часы с маятником. Так, часы с маятником в виде груза на стержне отстанут за сутки почти на 3 с, если их поднять из подвала на верхний этаж Московского университета (высота 200 м). И это только за счет уменьшения ускорения свободного падения с высотой.


Уравнение гармонического колебания

Уравнение гармонического колебания устанавливает зависимость координаты тела от времени

График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус. Или такое колебание можно описать формулой синуса с начальной фазой .

Изменение скорости и ускорения при гармоническом колебании

Не только координата тела изменяется со временем по закону синуса или косинуса. Но и такие величины, как сила , скорость и ускорение , тоже изменяются аналогично. Сила и ускорение максимальные, когда колеблющееся тело находится в крайних положениях, где смещение максимально, и равны нулю, когда тело проходит через положение равновесия. Скорость, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия - достигает максимального значения.

Если колебание описывать по закону косинуса

Если колебание описывать по закону синуса

Максимальные значения скорости и ускорения

Проанализировав уравнения зависимости v(t) и a(t), можно догадаться, что максимальные значения скорость и ускорение принимают в том случае, когда тригонометрический множитель равен 1 или -1. Определяются по формуле

Меняется во времени по синусоидальному закону:

где х — значение колеблющейся величины в момент времени t , А — амплитуда , ω — круговая частота, φ — начальная фаза колебаний, (φt + φ ) — полная фаза колебаний . При этом величины А , ω и φ — постоянные.

Для механических колебаний колеблющейся величиной х являются, в частности, смещение и скорость , для электрических колебаний — напряжение и сила тока .

Гармонические колебания занимают особое место среди всех видов колебаний, т. к. это единственный тип колебаний, форма которых не искажается при прохождении через любую однородную среду, т. е. волны, распространяющиеся от источника гармонических колебаний, также будут гармоническими. Любое негармоническое колебание может быть представлено в виде сумм (интеграла) различных гармонических колебаний (в виде спектра гармонических колебаний).

Превращения энергии при гармонических колебаниях.

В процессе колебаний происходит переход потенциальной энергии W p в кинетическую W k и наоборот. В положении максимального отклонения от положения равновесия потенциальная энергия максимальна, кинетическая равна нулю. По мере возвращения к положению равновесия скорость колеблющегося тела растет, а вместе с ней растет и кинетическая энергия, достигая максимума в положении равновесия. Потенциальная энергия при этом падает до нуля. Дальней-шее движение происходит с уменьшением скорости, которая падает до нуля, когда отклонение достигает своего второго максимума. Потенциальная энергия здесь увеличивается до своего перво-начального (максимального) значения (при отсутствии трения). Таким образом, колебания кинетической и потенциальной энергий происходят с удвоенной (по сравнению с колебаниями самого маятника) частотой и находятся в противофазе (т. е. между ними существует сдвиг фаз, равный π ). Полная энергия колебаний W остается неизменной. Для тела, колеблющегося под действием силы упругости , она равна:

где v m — максимальная скорость тела (в положении равновесия), х m = А — амплитуда.

Из-за наличия трения и сопротивления среды свободные колебания затухают: их энергия и амплитуда с течением времени уменьшаются. Поэтому на практике чаще используют не свободные, а вынужденные колебания.

§ 6. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ Основные формулы

Уравнение гармонических колебаний

где х - смещение колеблющейся точки от положения равновесия; t - время; А, ω, φ- соответственно амплитуда, угловая частота, начальная фаза колебаний; - фаза колебаний в моментt .

Угловая частота колебаний

где ν и Т - частота и период колебаний.

Скорость точки, совершающей гармонические колебания,

Ускорение при гармоническом колебании

Амплитуда А результирующего колебания, полученного при сложении двух колебаний с одинаковыми частотами, происходящих по одной прямой, определяется по формуле

где a 1 и А 2 - амплитуды составляющих колебаний; φ 1 и φ 2 - их начальные фазы.

Начальная фаза φ результирующего колебания может быть найдена из формулы

Частота биений, возникающих при сложении двух колебаний, происходящих по одной прямой с различными, но близкими по зна­чению частотами ν 1 и ν 2 ,

Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях с амплитудами A 1 и A 2 и начальны­ми фазами φ 1 и φ 2 ,

Если начальные фазы φ 1 и φ 2 составляющих колебаний одинако­вы, то уравнение траектории принимает вид

т. е. точка движется по прямой.

В том случае, если разность фаз , уравнение принимает вид

т. е. точка движется по эллипсу.

Дифференциальное уравнение гармонических колебаний ма­териальной точки

, или ,где m - масса точки; k - коэффициент квазиупругой силы (k =т ω 2).

Полная энергия материальной точки, совершающей гармони­ческие колебания,

Период колебаний тела, подвешенного на пружине (пружин­ный маятник),

где m - масса тела; k - жесткость пружины. Формула справедлива для упругих колебаний в пределах, в ко­торых выполняется закон Гука (при малой массе пружины в срав­нении с массой тела).

Период колебаний математического маятника

где l - длина маятника; g - ускорение свободного падения. Период колебаний физического маятника

где J - момент инерции колеблющегося тела относительно оси

колебаний; а - расстояние центра масс маятника от оси колебаний;

Приведенная длина физического маятника.

Приведенные формулы являются точными для случая бесконеч­но малых амплитуд. При конечных амплитудах эти формулы дают лишь приближенные результаты. При амплитудах не болееошибка в значении периода не превышает 1 %.

Период крутильных колебаний тела, подвешенного на упругой нити,

где J - момент инерции тела относительно оси, совпадающей с упругой нитью; k - жесткость упругой нити, равная отношению упругого момента, возникающего при закручивании нити, к углу, на который нить закручивается.

Дифференциальное уравнение затухающих колебаний , или ,

где r - коэффициент сопротивления; δ - коэффициент затухания: ;ω 0 - собственная угловая частота колебаний *

Уравнение затухающих колебаний

где A (t) - амплитуда затухающих колебаний в момент t; ω - их угловая частота.

Угловая частота затухающих колебаний

О Зависимость амплитуды затухающих колебаний от времени

I

где А 0 - амплитуда колебаний в момент t =0.

Логарифмический декремент колебаний

где A (t) и A (t+T) - амплитуды двух последовательных колеба­ний, отстоящих по времени друг от друга на период.

Дифференциальное уравнение вынужденных колебаний

где - внешняя периодическая сила, действующая наколеблющуюся материальную точку и вызывающая вынужденные колебания; F 0 - ее амплитудное значение;

Амплитуда вынужденных колебаний

Резонансная частота и резонансная амплитуда и

Примеры решения задач

Пример 1. Точка совершает колебания по закону x(t)= , где А=2 см. Определить начальную фазу φ, если

x (0)=см их , (0)<0. Построить векторную диаграмму для мо-­ мента t =0.

Решение. Воспользуемся уравнением движения и выразим смещение в момент t =0 через начальную фазу:

Отсюда найдем начальную фазу:

* В приведенных ранее формулах гармонических колебаний та же величина обозначалась просто ω (без индекса 0).

Подставим в это выражение заданные значения x (0) и А: φ= =. Значению аргументаудовлетворяютдва значения угла:

Для того чтобы решить, какое из этих значений угла φ удовлет-­ воряет еще и условию , найдем сначала:

Подставив в это выражение значение t =0 и поочередно значения начальных фаз и, найдем

Так как всегдаA >0 и ω>0, то условиюудовлетворяет толь­ко первое значение начальной фазы. Таким образом, искомая начальная фаза

По найденному значению φ постро-­ им векторную диаграмму (рис. 6.1). Пример 2. Материальная точка массой т =5 г совершает гармоничес-­ кие колебания с частотой ν =0,5 Гц. Амплитуда колебаний A =3 см. Оп-­ ределить: 1) скорость υ точки в мо-­ мент времени, когда смещение х= = 1,5 см; 2) максимальную силу F max , действующую на точку; 3) Рис. 6.1 полную энергию Е колеблющейся точ­ ки.

а формулу скорости получим, взяв первую производную по времени от смещения:

Чтобы выразить скорость через смещение, надо исключить из формул (1) и (2) время. Для этого возведем оба уравнения в квад­рат, разделим первое на А 2 , второе на A 2 ω 2 и сложим:

, или

Решив последнее уравнение относительно υ, найдем

Выполнив вычисления по этой формуле, получим

Знак плюс соответствует случаю, когда направление скорости совпадает с положительным направлением оси х, знак минус - ког­да направление скорости совпадает с отрицательным направлением оси х.

Смещение при гармоническом колебании кроме уравнения (1) может быть определено также уравнением

Повторив с этим уравнением такое же решение, получим тот же ответ.

2. Силу действующую на точку, найдем по второму закону Нью­тона:

где а - ускорение точки, которое получим, взяв производную по времени от скорости:

Подставив выражение ускорения в формулу (3), получим

Отсюда максимальное значение силы

Подставив в это уравнение значения величин π, ν, т и A, найдем

3. Полная энергия колеблющейся точки есть сумма кинетической и потенциальной энергий, вычисленных для любого момента вре­мени.

Проще всего вычислить полную энергию в момент, когда кинети­ческая энергия достигает максимального значения. В этот момент потенциальная энергия равна нулю. Поэтому полная энергия E колеблющейся точки равна максимальной кинетической энергии

Максимальную скорость определим из формулы (2), положив : . Подставив выражение скорости в фор­-мулу (4), найдем

Подставив значения величин в эту формулу и произведя вычис­ления, получим

или мкДж.

Пример 3. На концах тонкого стержня длиной l = 1 м и массой m 3 =400 г укреплены шарики малых размеров массами m 1 =200 г и m 2 =300г. Стержень колеблется около горизонтальной оси, перпен-

дикулярной стержню и проходящей через его середину (точка О на рис. 6.2). Определить период Т колебаний, совершаемых стержнем.

Решение. Период колебаний физического маятника, каким является стержень с шариками, определяется соотношением

гдеJ - т - его масса; l С - расстояние от центра масс ма­ятника до оси.

Момент инерции данного маятника равен сумме моментов инерции шариков J 1 и J 2 и стержня J 3:

Принимая шарики за материальные точки, вы­разим моменты их инерции:

Так как ось проходит через середину стержня, то его момент инерции относительно этой оси J 3 = =. Подставив полученные выражения J 1 , J 2 и J 3 в формулу (2), найдем общий момент инерции фи-­ зического маятника:

Произведя вычисления по этой формуле, найдем

Рис. 6.2 Масса маятника состоит из масс шариков и массы стержня:

Расстояние l С центра масс маятника от оси колебаний найдем, исходя из следующих соображений. Если ось х направить вдоль стержня и начало координат совместить с точкой О, то искомое рас­стояние l равно координате центра масс маятника, т. е.

Подставив значения величин m 1 , m 2 , m , l и произведя вычисле­ния, найдем

Произведя расчеты по формуле (1), получим период колебаний физического маятника:

Пример 4. Физический маятник представляет собой стержень длиной l = 1 м и массой 3т 1 с прикрепленным к одному из его концов обручем диаметром и массойт 1 . Горизонтальная ось Oz

маятника проходит через середину стержня перпендикулярно ему (рис. 6.3). Определить период Т колебаний такого маятника.

Решение. Период колебаний физического маятника опреде­ляется по формуле

(1)

где J - момент инерции маятника относительно оси колебаний; т - его масса; l C - расстояние от центра масс маятника до оси колебаний.

Момент инерции маятника равен сумме мо­ментов инерции стержня J 1 и обруча J 2:

(2).

Момент инерции стержня относительно оси, перпендикулярной стержню и проходящей через его центр масс, определяется по форму-­ ле . В данном случает= 3т 1 и

Момент инерции обруча найдем, восполь-­ зовавшись теоремой Штейнера ,где J - момент инерции относительно про-­ извольной оси; J 0 - момент инерции отно-­ сительно оси, проходящей через центр масс параллельно заданной оси; а - расстояние между указанными осями. Применив эту фор-­ мулу к обручу, получим

Подставив выражения J 1 и J 2 в форму­лу (2), найдем момент инерции маятника относительно оси вра­щения:

Расстояние l С от оси маятника до его центра масс равно

Подставив в формулу (1) выражения J , l с и массы маятника , найдем период его колебаний:

После вычисления по этой формуле получим T =2,17 с.

Пример 5. Складываются два колебания одинакового направле-­ ния, выражаемых уравнениями ;х 2 = =, гдеА 1 = 1 см, A 2 =2 см, с,с,ω = =. 1. Определить начальные фазыφ 1 и φ 2 составляющих коле-

баний. 2. Найти амплитуду А и начальную фазу φ результирующего колебания. Написать уравнение результирующего колебания.

Решение. 1. Уравнение гармонического колебания имеет вид

Преобразуем уравнения, заданные в условии задачи, к такому же виду:

Из сравнения выражений (2) с равенством (1) находим начальные фазы первого и второго колебаний:

Рад и рад.

2. Для определения амплитуды А результирую­щего колебания удобно воспользоваться векторной диаграммой, представленной на рис. 6.4. Согласно теореме косинусов, получим

где - разность фаз составляющих колебаний.Так как , то, подставляя найденныезначения φ 2 и φ 1 получим рад.

Подставим значения А 1 , А 2 и в формулу(3) и произведем вычисления:

A = 2,65 см.

Тангенс начальной фазы φ результирующего колебания опреде-­ лим непосредственно из рис. 6.4: ,отку-­ да начальная фаза

Статьи по теме